(x^2)+(2x+117)=180

Simple and best practice solution for (x^2)+(2x+117)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)+(2x+117)=180 equation:



(x^2)+(2x+117)=180
We move all terms to the left:
(x^2)+(2x+117)-(180)=0
We get rid of parentheses
x^2+2x+117-180=0
We add all the numbers together, and all the variables
x^2+2x-63=0
a = 1; b = 2; c = -63;
Δ = b2-4ac
Δ = 22-4·1·(-63)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-16}{2*1}=\frac{-18}{2} =-9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+16}{2*1}=\frac{14}{2} =7 $

See similar equations:

| 6x+1+4x-6=135 | | P=m²÷2-m | | 1-2y=90° | | 50+2x=30+4x | | X-2y=90° | | y=5-11 | | 6×10^-n=0.06 | | F(0)=3x^2+4x-2 | | 50=-10(x-12) | | 8(x-5)=20 | | a+295=-305 | | Y=-7x—3 | | -6x-5=8x2 | | 3x+4-5x+13=26 | | Y=3x+6/x-7 | | .x3-8=-2 | | 4/24=9/x | | 27^-x=1/729 | | 260+120t=140+160t | | 2f=3f-2 | | 3+5=f-(2/3) | | 1+2+3+4+5+6-2+3+4+5+6+7+3+4+5+6+7+8-4+5+6+7+8+9=z | | x/100=x+1 | | x/100=+1 | | d^24000=d^24001 | | d^2=d^2 | | 2+3=f-2 | | 34-f=33-f | | 3444-f=3444 | | 2/f=3/f+0.003 | | 2/f=3/f | | 2f=5f |

Equations solver categories